
Karl Lewis

EGD 212-02: Principles of Game Design

Final Documentation

Table of Contents

Iterations

Visual Design Document

System’s List

Player Movement:
Enemy Behaviors:
Line of Sight
Distraction Pickups:
Knife Pickups:
Win and Loss States:
Gameplay Feedback:

Nodes & the Player:
Enemies:
Distractions:
Knives:

Mechanics & Elements Tables

Mechanics Table:
States of Objects:
Art/Sound Assets:

QA Plan, Data, & Analysis

Test Plan
Data & Results
Analysis of Data

Digital Prototype Overview

Design Intent:
Target Audience:
Theme and Context:
Iterations from Physical Prototype:

Gameplay Changes:
Aesthetic Changes:
Digital additions

Game Mechanics:
Gameplay Rules:
Game Objects:
Core Game Loop Sequence: Level 1 walkthrough for demonstration:

Postmortem

What Went Right
What Went Wrong
What Was Learned
What Could Be Done Differently

Iterations
1. Updated the colors and art assets of the Visual Design Document to reflect the final

artwork and aesthetic of the game.
2. Made changes and additions to Enemy Behaviors, Line of Sight, Distraction Pickups,

and Knife Pickups in the Systems List
3. Added sections to the Feedback section of the Systems List
4. Changed and added to Feedback section in the Systems List
5. Added an Art/Sound assets table to the Mechanics and Elements table to provide a full

list of all assets required for the final game.
6. Completed a new round of QA testing with a new plan, survey, data, and analysis

Visual Design Document

System’s List

1. Player Movement:
a. Turn based

b. Take turns with enemies

c. Move only one node per turn

d. Can only move to an adjacent node

e. Nodes that the player can move to have a different sprite with a target on

it.

2. Enemy Behaviors:
a. Two types of enemies: patrolling and stationary

b. Patrolling enemies only move in two directions depending on which

direction is their front:

i. Vertically facing patrolling enemies only move up and down along

their patrol route.

ii. Horizontally facing patrolling enemies only move left and right along

their patrol route.

iii. Front facing direction is determined by the direction of the enemy’s

line of sight cone.

c. Patrolling enemies do not stray from the line of nodes (patrol route) they

start the level on unless they are lured with a distraction.

i. They face different directions depending on which way they are

moving.

ii. When they reach the end of their patrol route, their sprite and vision

cone is flipped to switch their face to the opposite direction.

d. All patrolling enemies move immediately after the player moves.

e. Stationary enemies are more like traps or obstacles to the player than AI

opponents.

i. They face their starting direction throughout the entire game.

3. Line of Sight
a. All enemies, whether patrolling or stationary, have a vision cone referred

to as a “line of sight”.

b. Each enemy’s line of sight extends to exactly one node in front of their

current position.

c. The direction of the line of sight cone determines the direction an enemy is

facing.

d. The line of sight cone exists to give the player feedback about nodes they

should not move into.

e. If the player chooses to move into an enemy’s line of sight during their turn

(that is, move one node directly in front of where the enemy is facing),

they are discovered by that enemy and must retry the level.

f. If an enemy moves and the player happens to be within their line of sight,

the player is not discovered; the player must willingly move into the line of

sight to lose the level and start over.

4. Distraction Pickups:
a. Distractions allow the player to lure ONLY patrolling enemies away from

their current position.

b. Distraction sprites look like bricks.

c. To pick up a distraction, the player moves onto a node where a distraction

pickup is located.

d. The player may throw the distraction to any node within range (marked

with the target sprite).

e. The player throws the distraction by clicking on a node within range.

f. When the distraction reaches the target node, a gray square appears to

indicate the noise it made. Any patrolling enemy touched by this square is

successfully lured.

g. The distraction cannot be saved for later and must be used immediately

once it is picked up.

h. Stationary enemies are not affected by distractions

i. Patrolling enemies touched by the noise square immediately move to the

distraction’s target node.

i. While moving to the target node, their line of sight cones turn off.

ii. Once the target node is reached, the enemy’s line of sight cones

turn back on and the enemy will patrol the new line of nodes. but

only in a horizontal direction.

5. Knife Pickups:
a. The knife is a one time use per level pickup that allows the player to move

onto a node occupied by an enemy and eliminate them from the level.

b. To pick up a knife, the player moves onto a node where a knife pickup is

located.

c. Once picked up, it is saved until the player moves onto an enemy

occupied node.

d. The enemy occupying said node is removed from play, along with the

knife token.

e. Players cannot move through an enemy's line of sight to use the knife

pickup; they must move onto an enemy occupied node from a side an

enemy is not facing.

6. Win and Loss States:
a. To win, the player must reach the yellow goal node in each level without

entering an enemy’s line of sight cone.

b. The player loses the level when they enter an enemy’s line of sight.

c. Upon losing the level, the player is able to retry the level and develop a

new strategy to overcome the level’s obstacles.

d. At any time, the player may use the “Restart” button to restart the current

level.

7. Gameplay Feedback:

Nodes & the Player:

a. Nodes that the player may move to change their sprite to show a node

with a target on it. Whenever the player moves, these nodes are updated

when the player reaches their target node.

b. Mousing over a node within movement range highlights the node in green.

c. Clicking on a node plays a walking sound effect. The player character

smoothly moves from their current node to their target node.

Enemies:

d. When enemies move, a walking sound effect is played. The enemy

characters smoothly move from their current nodes to their target nodes.

e. Line of sight cones change color based on the player’s proximity to them:

The cone is green by default. If the player can move into a line of sight

cone, that cone changes color to yellow. If the player moves into a line of

sight cone, that cone turns red.

f. Moving into a line of sight cone also triggers a gunshot sound effect, an

animation of muzzle flash on the cone’s respective enemy, a moving

exclamation mark above the enemy’s head, a “dead player” sprite to

appear, a death message, and a trigger that turns the screen black and

white. After five seconds the level resets so the player may try the level

again.

Distractions:

g. Picking up a distraction plays a “rummaging” sound effect. Throwing the

distraction plays a “whoosh” sound effect for the throw and then a “clak”

sound effect when the distraction lands on the target node. An animation

of the distraction item moving smoothly to its target node is also played.

h. If an enemy is hit with the distraction range object, a question mark

appears above their heads. A “hmm?” sound effect is played as the

enemy quickly moves to the node where the distraction landed.

Knives:

i. Picking up a knife plays a “shiiiing” sound effect. The knife object follows

the player’s position and appears above the sprite’s hand. Moving onto a

node with an enemy while a knife is possessed plays a “stab” sound effect

and creates a blood particle system. The affected enemy character’s

sprite changes to be on the ground in a small pool of blood.

j. Picking up a knife also displays a small icon of a knife in the bottom left

corner of the screen to indicate the player’s possession of a knife. When

the knife is used, this icon is no longer displayed.

k. Mousing over nodes with a knife in hand displays a message box to

indicate the ability to kill an enemy by moving onto nodes.

Mechanics & Elements Tables

Mechanics Table:

Mechanic Types

SPACE TIME OBJECTS ACTIONS RULES SKILLS

Levels
(Continuous)

Turns
(Discrete)

Player
Character

Using
distractions

Goal Space
(Operational)

Player
Movement
(Physical)

Nodes
(Continuous)

<NA> Stationary
Enemies

Using a
knife

Move one
node per turn

limit
(Operational)

Discovering
enemy patrol

patterns
(Mental)

<NA> <NA> Patrolling
Enemies

Enemy
Movements

Enemy Line
of Sight

(Operational)

Creating a
movement
strategy
(Mental)

<NA> <NA> Distraction
Pickups

Enemy Patrol
Patterns

Move into
LOS to lose
(Operational)

Where to
throw

distractions
(Mental)

<NA> <NA> Knife
Pickups

Player
Movements

Move player
character to
determine

patrol
patterns

<NA>

States of Objects:

Object Name

PLAYER
CHARACTER

STATIONARY
ENEMIES

PATROLLING
ENEMIES

DISTRACTION
PICKUPS

KNIFE
PICKUPS

NODES

Moving Watching
node in LOS

Waiting for
player to move

Distraction on
node

Knife on
node

Node in
player range

Waiting for
enemies to

move

Detecting
player

Moving in
direction of

LOS

Distraction
picked up

Knife picked
up

Node outside
player range

Using
distraction

Killed by knife Watching node
in LOS

Nodes in range
highlighted

Knife UI
displayed

Node
moused over

Killing an
enemy

<NA> Detecting
player

Distraction
Thrown

Kill UI
displayed on
node mouse

over

Node clicked
on by player

Caught by an
enemy/killed

<NA> Moving to
distraction

Distraction
landed

Knife saved
until used

Node
occupied by

enemy

Reaching goal
node

<NA> Changing
patrol route

after distracted

Distraction
removed from

game

Knife used
to kill enemy

Node in
enemy LOS

<NA> <NA> Turning at end
of patrol path

Noise square
created

Knife
removed

from game

<NA>

<NA> <NA> Killed by knife <NA> Knife UI
disabled

<NA>

Art/Sound Assets:

Object for Asset
PLAYER

CHARACTER
STATIONARY

ENEMIES
PATROLLING

ENEMIES
DISTRACTION

PICKUPS
KNIFE

PICKUPS
NODES LEVELS &

MENUS

Alive sprite Alive sprite Alive sprite Pickup sprite
(looks like brick)

Knife Sprite Circle
sprite

(default)

Start button
& text (main

menu)

Dead sprite Dead sprite Dead sprite Move to player
when picked up

animation

Follow
player

animation

In player
range

sprite (big
circle with

target)

Exit button &
text (main
menu &

game end)

Move to
node

animation

Forward
LOS cone

sprite

Forward
LOS cone

sprite

Move to target
node when

thrown animation

Knife
available

UI element

Default in
range gray

material

Restart
button & text
(each level)

Holding
knife

Flipped
LOS cone

sprite

Flipped LOS
cone
sprite

Noise range
square sprite

Kill UI
element on

node
mouse
over

Moused
over in
range
green

material

Restart
game button
& text (game

end)

Walking
sound

Exclamation
Mark for
player

detection w
animation

Exclamation
Mark for
player

detection w
animation

Noise range
square expand

animation

“Shiiing”
pickup
sound

Yellow
goal node

sprite

Level
backgrounds

<NA> Green LOS
material

Question
mark when

lured by
distraction w

animation

“Rummage/brick”
pickup sound

Stab sound
on enemy

kill

<NA> Blue overlay,
grayscale, &

bloom
effects

<NA> Yellow LOS
material

Green LOS
material

Throw sound <NA> <NA> Rain Maker
prefab (from
Asset Store;
made by Jeff

Johnson)

<NA> Red LOS Yellow LOS Landing sound <NA> <NA> Blue

material material buildings

<NA> Gunshot
sound

Red LOS
material

<NA> <NA> <NA> Pink
buildings

<NA> Muzzle
flash

animation

Gunshot
sound

<NA> <NA> <NA> Square
buildings

<NA> <NA> Muzzle flash
animation

<NA> <NA> <NA> Rain sound

<NA> <NA> Move to
node

animation

<NA> <NA> <NA> Wind sound

<NA> <NA> Walk sound <NA> <NA> <NA> Background
music

(menus and
levels)

<NA> <NA> “Hmm?”
lured sound

<NA> <NA> <NA> <NA>

QA Plan, Data, & Analysis

Test Plan
For the final round of QA testing, I had classmates and friends play the feature complete

build of the game. This build includes all of the features, mechanics, systems, assets,

and sounds of the game. My testers played through all three levels of the game to

mainly test for any major bugs in the gameplay as well as any final tweaks and polish

adjustments to game feel and feedback as well as overall clarity and understanding of

the game’s mechanics.

Data & Results

Analysis of Data
Based on the responses for questions 1 and 2, I feel it is safe to say that the feel of the game’s
main mechanic (player and enemy movements) is solid and working as intended; no testers
said the movement felt unresponsive and completely clunky, and every tester said the
movement speed felt right.

Questions 3 and 4 were intended to test how easy it was to understand the game’s two other
primary mechanics (distractions and knives). All six testers knew exactly how to use the
distractions, meaning the tutorial information at the beginning of the game was effective.
Additionally, all but one of the testers felt the knife UI elements were useful and let them know
when they could kill an enemy.

Questions 5, 6, and 7 were intended to test for known bugs as well as uncover any new bugs
along the way. Half of the testers encountered a known bug where enemies sometimes face the
opposite direction after being lured with a distraction. I attempted to fix this bug by adding a
conditional statement to make the enemy sprite face a certain rotation when a certain vision
cone is active; it works selectively. Most testers did not encounter a known bug where enemies
sometimes move forward more than they should and detect the player when they should be
safe. This bug has since been corrected. Finally, question 7 helped me find several other bugs
that have since either been resolved or are an easy fix.

Finally, questions 8, 9, and 10 were meant to gauge the success of the overall game
experience, aesthetic qualities, and gameplay feedback. Based on the results of question 8, all
the testers thought the game had a good feel to it and had solid aesthetic qualities. Only one
tester thought the game didn’t have enough feedback; it should be noted that this tester played
an earlier build of the game in class that was feature complete gameplay wise but did not have
all of the visual and auditory feedback. Lastly, all of the testers either thought that the gameplay

was strategic or engaging or somewhere in between; it should be noted that one tester said to
me after playing that the level design had some minor flaws.

Digital Prototype Overview

Design Intent:

The goal of Freedom’s Silence is to capture the essence of traditional real-time stealth

gameplay and translate it into a top down, turn based strategy/puzzle game for the iPad

and Android tablets, with strategic gameplay based around movement, timing, puzzle

solving, and light resource gathering. Set within the confines of a maximum security

prison during a massive prison break, players will guide an escapee through the maze

like interior and exterior of the prison, avoiding patrolling guards who will attack

escapees on sight.

Target Audience:

Freedom’s Silence will primarily appeal to fans of real time stealth IP’s such as Metal

Gear Solid, Hitman, and Deus Ex seeking to experience a game for iPads and Android

tablets that adapts the core elements of real time stealth games to a turn based form;

these elements include strategic navigation around obstacles, careful timing problems,

and the ability to interact with AI patterns. Fans of visual and timing puzzles will also find

appeal in the game’s memorization and movement mechanics. Finally, fans of prison

escape films and the thriller genre will find appeal in the game’s prison break context,

which will match the intensity of the strategic stealth gameplay.

Theme and Context:

Freedom’s Silence takes place in a prisoner of war camp during a violent rainstorm.

Players take on the role of a prisoner of war that managed to sneak out of their cell and

is now being hunted relentlessly by the camp guards. In order to escape the camp and

regain their freedom, players will guide the escaped prisoner through various

encounters with guards, simultaneously avoiding, distracting, and eliminating the guards

with strategy and careful timing.

Iterations from Physical Prototype:

● Gameplay Changes:
○ Stationary enemies can no longer be lured with distractions

○ Patrolling enemies behave slightly different when lured with distractions;

instead of moving turn by turn to where the distraction landed, they move

there instantly, and only patrol in a horizontal direction on their new path.

○ All enemies now have vision cones that change color to indicate the

player’s status; if the cone is green, the player is not in danger of being

seen; if it’s yellow, the player is in danger of being spotted (meaning the

player can click on a node that will get them spotted); if it is red, the player

has been spotted and killed, causing the level to restart.

● Aesthetic Changes:
○ Changed the setting from a prison to a prisoner of war camp in an attempt

to make the context more interesting and allow for a better atmosphere.

○ Changed the color pallete to be more dark and gritty.

○ All sprites except for the distractions and knives have been changed;

instead of being side facing images of characters, the sprites are now all

top down characters.

○ Getting spotted by an enemy causes the player to be shot on sight,

meaning enemies do no longer fully move to the player’s current node

when the player is spotted.

● Digital additions
○ Added sounds for every action as well as ambient rain and wind sounds.

○ Added a menu with a tutorial and credits screen.

○ Added three levels of increasing difficulty

Game Mechanics:

1. Three levels with nodes connected by lines with a single yellow goal space.

Reaching the yellow goal space causes the player to go to the next level. When

all three are complete, the players wins the game and can restart.

2. Node based movement to allow traversal of equal distances each turn. Any node

adjacent to the player’s current position can be moved to.

3. Enemy characters that the player must avoid and can interact with.

a. Patrolling enemies that move.

b. Stationary enemies that serve as obstacles.

4. Enemy patrol patterns that are predetermined at the start of the level. Enemies

move back and forth along a line of nodes until they are lured with a distraction.

5. Enemy “line of sight” mechanic to facilitate the loss state. Moving into an enemy’s

line of sight causes the player to lose the game.

6. Distractions that allow the player to lure enemies to a specific node and force an

enemy to change patrol patterns, Useful for creating openings in patrol patterns

to sneak through.

7. Knife item that allows the player to eliminate an enemy from the level. One time

use only.

Gameplay Rules:

1. Turn based movement.

2. Player takes turn with AI enemies

3. Two types of enemies: patrolling and stationary.

a. Stationary enemies are not affected by AI turns

b. Patrolling enemies move back and forth along a set line of nodes; this is

their “patrol route”.

4. Player and patrolling enemies move only one node during their turns.

5. Player can move to any adjacent node regardless of direction.

6. Patrolling enemies only move in two directions depending on which direction is

their front:

a. Vertically facing patrolling enemies only move up and down along their

patrol route.

b. Horizontally facing patrolling enemies only move left and right along their

patrol route.

c. Front facing direction is determined by the direction the character’s line of

sight faces.

7. Patrolling enemies do not stray from the line (patrol route) they start the level on

unless they are lured with a distraction.

a. They face different directions depending on which way they are moving.

b. When they reach the end of their patrol route, their sprite is flipped to

switch their line of sight to the opposite direction.

8. Stationary enemies are more like traps or obstacles to the player than AI

opponents.

a. They face their starting direction throughout the entire game, and cannot

be lured with distractions.

9. Player has two other methods of interaction with the AI:

a. Distractions

b. Knife

10.Distractions allow the player to lure an enemy away from their current position.

a. When a distraction is picked up, any node that could be moved to is in

throwing range.

b. The distraction cannot be saved for later and must be used immediately

once it is picked up.

c. Clicking on a node in range throws the distraction to that node and creates

a “noise” square.

d. Patrolling enemies touched by the noise square move to the distraction

target node immediately.

e. Once a lured enemy reaches the distraction target node, their patrol

pattern changes to the new line of nodes they are on, but only in a

horizontal direction.

11. The knife is a one time use pickup that allows the player to move onto a node

occupied by an enemy and eliminate them from the game.

a. Once picked up, it is saved until the player moves onto an enemy

occupied node.

b. The enemy occupying said node can no longer detect the player.

c. The knife item disappears after being used.

12. To win, the player must reach the yellow node of each level without entering an

enemy’s line of sight.

13. The player loses the level when they enter an enemy’s line of sight:

a. An enemy’s line of sight extends to one node directly in front of the

enemy.

b. This node must also be located at the direction the enemy is facing

c. In order to lose the level, the player must move into the line of sight; if an

enemy moves and the player happens to be where their line of sight is, the

player does not lose the game.

d. Entering a line of sight resets the level and allows the player to try again.

Game Objects:

1. Overview of level 1.

2. Overview of level 2.

3. Overview of level 3.

4. Player character

5. Patrolling Enemy

6. Stationary Enemy

7. Distraction item

8. Knife item

Core Game Loop Sequence: Level 1 walkthrough for

demonstration:

1. Level start. Nodes with target over them are in player range.

2. Player mouses over a node; note the green highlight.

3. The player moves to a new node. Note the change in the player sprite’s direction

and the updated enemy positions.

4. After a few turns, the player acquires the knife. Note how although the player’s

sprite is inside of the enemy vision cone, the player did not choose to move into

the line of sight, meaning they are not detected. Also note the popped up knife UI

in the bottom right corner

5. The player maneuvers to kill the stationary guard looking at the distraction object.

Note the “kill” popup that displays when the player mouses over an enemy with

the knife object possessed.

6. The player kills the enemy. Note the removal of the knife sprite and UI, as well as

the change in the enemy’s sprite

7. Now that the stationary enemy is dead, the player can pick up the distractions.

Note that the nodes in range are where the player may throw the distraction to

8. The player throws the distraction, instantiating the noise square, which collides

with the vertically moving enemy and lures them to that position

9. The lured enemy now patrols left and right along the line where the distraction

node landed. The player also now has an opening to reach the goal node, since

the previously vertical enemy was blocking the path

10.The player makes their way to the goal node to move onto the next level

11. Loss state demo (1 of 2): note how the guard’s vision cone is yellow, meaning if the

player clicks on the green node…

12. Loss state demon (2 of 2): …they are spotted and killed by the enemy. Note the

change of the enemy vision cone color as well as the exclamation mark that appears to

indicate detection of the player

Postmortem
I felt this experience of designing and building a game from the ground up in 6 weeks was not
only an extremely helpful (and often stressful) learning experience but also a lot of fun. I really
loved making this game, especially when it came to designing the systems and mechanics. I
also got the opportunity to do (mostly) all my own sound design and compose a short original
song for the game, which I think will be invaluable to me as I pursue the Sonic Arts
Specialization.

What Went Right
1. Designing the game’s mechanics and systems to work together in harmony
2. Succeeding at the intended experience (based on QA feedback results)
3. Implementing player movement and both pickup types into Unity
4. Recording all but one of the game’s sound effects which successfully match their visual

counterparts
5. Staying on schedule via Trello and having plenty of time to complete everything I scoped
6. Staying within scope

7. Bug fixing; as of the current build, there is only one known bug. Sometimes when
moving, nodes will have the moused over material when the player hasn’t moused over
them.

8. Learning. A lot of learning
9. I had a lot of fun!

What Went Wrong
1. I’m not very happy with the way I programmed the enemy movement mechanics. While

they work fine and mostly as intended, it is a very clunky and not efficient way of doing it.
I had to actually modify the way enemy’s behave after using distractions because of the
way I coded the system. Despite this, the intended experience of the game is still there.

2. Because of the way I coded the enemy movement system, I spent a lot more time than
planned working on the enemies and trying to make them function properly. This cost me
some time for other class’s assignments.

3. Building the game caused a host of new bugs to appear that didn’t show up in the Unity
editor, which caused me to stay up longer than I should have one night. All of these bugs
have been since been fixed

What Was Learned
1. Documentation is really the key to all of game design. Without having these documents

with me as a reference while coding the game, it would have been a far more time
consuming process.

2. Writing out algorithms and psuedo code before programming anything really helps when
the time comes to program.

3. Creating code for a turn based game is far harder than I initially thought it would be. As
someone who consistently yearns for a challenge, I had no problems with this.

4. Don’t treat art creation like a chore. I’m not very artistically inclined when it comes to
visual arts which often makes me hate making art for my games. For this game I stopped
treating it like a chore and more of a fun thing I was doing and I actually found myself not
only enjoying making the art but also producing better quality art than I ever had before.

5. Implement feedback as soon as possible.
It would take a few more pages to list everything I learned from this project

What Could Be Done Differently
1. Enemy implementation, as stated before, was not very efficient or optimized. I would

definitely try and find a different way to implement this system in future games
2. Plan more time for things going wrong to prevent stress from building up when stuff

doesn’t work properly
3. Make sure all errors are gone from the debug log before building an executable in Unity.

